

Chemo sense

EDITORIAL

Human Chemical Communication

By Graham Bell

Director

Centre for ChemoSensory Research UNSW
g.bell@unsw.edu.au

Insects do it, elephants do it. Pigs and domesticated dogs do it. Noel Coward would never have refused a chance to do it. So let's do it? Let's communicate.

There is no doubt that humans communicate using chemicals: think only of the uses of perfume through the ages. But do we leave biological odour trails or scent marks or waft out "come-hithers" from our scent glands? And if we do, who is receiving these messages and with what effect?

This issue reviews the state of thinking on human pheromones. Evidence is growing that humans are receiving and using chemical messages from each other. They have the means to send and receive signals. In our lead article, Wysocki and Preti of Monell, review the concepts and scientific evidence to support or refute definitions of pheromones, in terms of chemistry, human physiology and behaviour.

And while the science is being done, the perfume and flavour industries are convinced of the potential of their products, as shown by our useful guide to human perfumes presented by Krishnamurthy of IFF.

We wish Don Barnett and Peter Barry a happy retirement and in sustaining their valuable chemosensory efforts.

Human Pheromones: Oxymoron, Marketing, Maya, or Meaningful Messages?

Charles J. Wysocki and George Preti

Monell Chemical Senses Center
Philadelphia, PA, USA

In the academic and biomedical communities, mention of human pheromones brings forth mixed reactions. To some the concept is foreign to the extreme. Arguments akin to the following can be heard: *Microsmatic humans have advanced well beyond reliance upon chemical communication for social order. Insects, yes, that's where it all began; vertebrates, including some mammals, yes, because chemicals have been identified for pigs, mice and elephants; but not for humans. Furthermore (the argument continues), humans do not have a functioning vomeronasal organ (VNO) and a VNO is necessary to detect pheromones* (we will attempt to dissuade the reader from this non sequitur).

Others embrace the concept to the extreme. Although Rodriguez and Mombaerts (2002) cautioned about misuse of their results, the identification of VNO receptor genes in the human genome has lead others to argue that *since humans have intact V1R-like receptor genes, they must use them to detect pheromones.*

In another area, especially on the Internet, hawkers of "human pheromones" try to bring in

INSIDE:

Perfume: what is it?

Chardonnay kills germs

Tears and icicles in Harbin

2003 Events

Centre for ChemoSensory Research

The University of New South Wales

ISSN 1442-9098

cont. pg 2

Human Pheromones: Oxymoron, Marketing, Maya, or Meaningful Messages? continued

big bucks. Herein may lay the reason why some in the academic and biomedical communities reject human pheromones. Many have been misinformed about the true nature of pheromones.

In this review, we will A) define the various types of pheromones; B) discuss how pheromones function; C) explore the evidence for human responses to pheromones; D) introduce candidate human pheromones; E) briefly review the sensors in the nose that can detect pheromones, including those found in humans; F) argue that no single detection system is devoted to pheromones; and G) discuss the relationship between human pheromones and the VNO.

A. What Is a Pheromone?

In the original definition provided by Karlson and Lüscher (1959), pheromones are "substances which are secreted to the outside by an individual and received by a second individual of the same species, in which they release a specific reaction, for example, a definite behavior or a developmental process." The original pheromone was a single compound, bombykol, which is released by the female Silk moth (*Bombyx mori*) to attract the male to mate. Now, however, it is possible to purchase many types of putative human sex ("releaser"; discussed below) pheromones. They go by such names as *The Edge*, *Scent of Eros™*, *Alter-ego*, *Pheromone Additive*, and many more.

Unfortunately, even for insects the original definition now fails. As examples, in some situations the chemicals must be many and in the appropriate ratio to be effective; there is cross-species communication, to the extent that some predators emit the female sexual signaling pheromone of its prey, attracting the unknowing male to

become a meal; the "specific reaction" may not be specific and may be dependent upon context. Furthermore, the definition, which included "releaser" (of behavior) and "primer" (of developmental process), has been expanded to include two additional classes, viz., signaler (provides information) and modulator (alters the probability of an outcome) pheromones.

How Do Pheromones Function?

At present, many recognize four categories of pheromones, viz., primers, releasers, signalers and modulators. Each will be discussed briefly.

1. Primers. Primer pheromones typically affect endocrine or neuroendocrine responses. Examples include: the onset of puberty, which can be determined in part by exposures to the chemical signals of adults of the opposite sex; synchrony of estrous or menstrual cycles in females, by exposure to chemical signals from the females; suppression of estrus by exposure to the chemical signals of females living in high density; in some species, induction of ovulation by chemical signals from males; pregnancy failures by exposing females to the chemical signals of strange males; and surges in testosterone in males exposed to the chemical signals of females.

2. Releasers. Releaser pheromones typically bring on a behavioral response. Sexual attractants, i.e., sex pheromones on the Internet, are the most common examples of releasers, but not in humans (discussed below). The first mammalian pheromone to be chemically identified, androstenone (and perhaps, too, its alcohol cousin, androstenol) is a releaser pheromone. It is present in the saliva of boars. When a sow that is in heat smells androstenone, she assumes the lordosis

spray of androstenone from a can of *Boar Mate®*, in the direction of the sow, is sufficient to release the behavior.

3. Signalers. Signaler pheromones are most likely the most numerous. These chemical signals provide information to the smeller. Whether any consequence ensues is typically irrelevant. The types of information are myriad. There is excellent evidence that animals, using chemical signals alone, can extract information about the sex of the sender, the status of the reproductive cycle if the sender is a female, the age of the animal, its dominance status if a social structure is maintained, its health and what it recently ate, and, importantly, the individual identity of the sender. This last chemical signal is known as the odor-print of the individual and is determined, in large part, by the set of genes that regulates the immune system, the major histocompatibility complex (MHC; Yamazaki, Singer and Beauchamp, 1998-99). Variation in MHC is so extreme that in nature no two individuals (unless they are identical twins in humans or analogous siblings in non-humans) share the same MHC-type. Hence, other than the noted exceptions, no two individuals share the same MHC-determined odor-print.

4. Modulators. most other pheromones, originated from the concept of modulator pheromones was introduced following initial work with humans (McClintock, 2000). There is evidence to suggest that fluctuations in human odor linked to emotional states (Chen and Haviland-Jones, 1999, 2000; Ackerl et al., 2002). McClintock (2000) proposed that this chemosensory information modulates one's context of other people, e.g. smelling an emotion influences one's own emotive state.

Introduction to Fragrances

Raju Krishnamurthy

International Flavors and Fragrances (Australia) Ltd.
11 Hudson Avenue, Castle Hill
NSW Australia 2154
Raju.Krishnamurthy@iff.com

Introduction

Perfumes have been used in various forms since the beginning of civilisation. The word "perfume" is derived from the French word "parfum" which originated from the Latin "per"-through and "fumes"- smoke. A perfume is precisely defined as "a sweet smelling liquid" for personal use and a fragrance as "a sweet scent" which has a broader applications, however the terms are often used interchangeably.

There are at least 5,000 perfumes and fragrances currently commercially available around the world. These products are sold under approximately 900 brands and sales companies (Boelens & Boelens, 2001). Every year, about 200 new fragrances appear on the market.

This article gives an overview of fragrance, which is the product of an important and growing global industry.

History of Perfumes

The story of perfumery reflects the history of human civilisation. In all cultures since antiquity, the original use of aromatic materials was ceremonial, religious, therapeutic or aesthetic.

In the West, the Egyptians, ancient Greeks, Hebrews, and Romans were familiar with perfumes.

The Egyptians used perfume in their temples and anoint the statues of their gods. The dead were embalmed in decay-resistant and perfumed substances. The available substances were gum resins, oleoresins, woods & flowers.

The Greeks burnt perfumes at religious festivals, births, marriages & funerals. Perfumes were believed to relieve pains.

Perfumes were also part of daily life in the Roman Empire.

The Middle Ages saw almost no fragrance activity in the West, as supplies of aromatic materials from the rest of the World were unavailable. However, the conquest of Venice by Constantinople opened the West to the perfume trade again, and Italy became the centre of the perfume industry.

Technology began to have impact on fragrances with the introduction of distillation by Islamic scholars, and the production of ethyl alcohol. Eau de cologne, introduced in 1710, marks the beginning of modern perfume creation.

The history of modern perfumery starts with the introduction of synthetic chemicals. Chemistry started to take its present form in the 1830s, and the decade around 1875 witnessed a flowering of technology that revolutionised the fragrance industry.

The nineteenth century saw the development of a number of methods to extract fragrance materials from natural substances. The south of France had the greatest concentration of fragrance activity.

Throughout the twentieth century, synthetic chemicals increasingly became the major components of most fragrances. Fragrance use increased in household products such as laundry detergents and fabric softeners after World War II. Fragrances also became a major marketing component of personal care items such as shampoos and deodorants.

Changes in society and marketing arose simultaneously with the growth of technology. Fashion designers added signature fragrances to their lines of clothes and accessories.

Some important historical highlights are summarised in Table 1 (Herman, 2002).

Table 1: Highlights in the History of Fragrance

1800 B.C.	Perfume made by maceration (Mesopotamia)
Circa 350 B.C.	First book on perfume (Theophrasus of Athens)
Circa 1000	Distillation of rose oil (Iran-Sina)
Circa 1202	Venice conquered Constantinople brings perfumes back to the West
Circa 1320	Distilling alcohol with serpentine cooler (Italy)
1370	Hungary Water introduced
1523	Perfumery brought to France (Caterina de'Medici)
1573	Perfume brought to England – perfumery encouraged by Elizabeth I)
1710	Eau de Cologne (by Fanna family)
1771	Yardley founded
1775	Heubigant founded
1826	H.Hanek (England) synthesised
1827	Guerlain founded
1835	Solvent extraction of fragrance materials by Robiquet (France)

Source: Herman (2002)

Creation of a Perfume

Perfume creation is an art and not a science. A perfume is like a painting or a piece of music, except the artist's (perfumer's) palette is replaced with fragrant essential oils.

Perfume creation starts with a concept or image. Once the concept is decided the process moves to identifying ingredients that would fit the concept. The perfumer studies every aspect of the concept and achieves perfection by trial and error. This process can be long.

Historically, all perfumes were made using natural materials. However, a modern fragrance is a complicated blend of natural and synthetic ingredients, maybe 300 - 400 different ones. Each ingredient affects the others in often unpredictable ways.

Most modern perfume companies use "keys", which are compounded blends that replace expensive naturals or products that are illegal.

Introduction to

Compounds made by major perfume companies typically contain "captives", that is, aroma chemicals or blends made for internal use and not made available to outside companies. This makes duplication of the product much more difficult.

There have been numerous great perfumers. Some are mentioned in Table 2.

Table 2 - A Few Noteworthy Perfumers

Perfumer	Perfume
Ernest Beaux	Chanel 5, Cuire de Russie, Soir de Paris
Sophia Groszman	Eternity, Spellbound, Tresor & many others
Jean Kerleo	Mille, Eau de Parfum, Sublime, Voyageur
Guy Robert	Madame Rochas, Diorissime, Gucci No.1, Amouage
Edmund Roudnitska	Diorissimo, Femme, Eau Sauvage & many others

Source: Boelens & Boelens (2001)

Fragrance Ingredients

All ingredients used to create a perfume fall into one of three categories -
1) Naturals 2) Chemicals and 3) Bases

The naturals are obtained from plants or animals. These are complex mixtures of odorous substances. The characteristic odor of a single material is called a "note". An "accord" is the blend of several "key" notes, which make up the main character of a fragrance.

Natural ingredients from animal origin include:

Musk - Musk Deer; Ambergris - Sperm Whale; Castoreum - Castor Beaver; Civet - Civet Cat

Some natural ingredients from plant origin are:

Patchouli - Leaves; Vetiver - Roots; Cinnamon - Bark; Rose - Flowers; Cedarwood - Woods; lemon - Fruit Peels; Coriander - Seeds; Styrox - Resins; Pepper - Berries; Citronella - Grasses

Chemicals are obtained through synthesis. They offer consistency in supply and quality, provide a means for higher creativity with odors not found in nature, and are less expensive than naturals.

Bases are "ready made" accords. They substitute for naturals and provide characteristic fantasy notes. Bases are used where odors cannot be obtained from nature, and to replace rare, expensive or unsafe natural materials.

Forms of Fragrances

The finished fragrance oil is often dark, heavy and not very volatile. A carrier is necessary for the perfume to perform well. Carriers can be product bases e.g. detergent powder, fabric softener, shampoo etc., or alcohol (ethanol) for fine fragrances.

Fine fragrances exist in three forms: Perfume, Eau de Toilette, and Cologne.

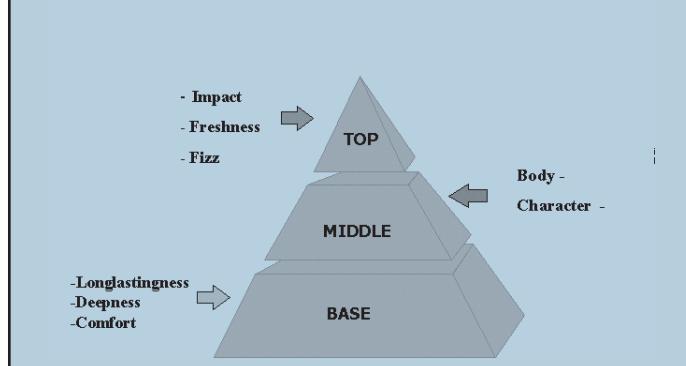
Perfume contains the highest level of fragrance oil (20-30%) and is the strongest and longest lasting.

Eau de Toilette contains a lower level of fragrance oil (10-18%) and has slightly less strength & tenacity.

Cologne contains the lowest percentage of fragrance oil (5-10%) and may contain some water, which softens the scent. It is the oldest form of fragrance, originating in Cologne, Germany.

Structure of Fragrances

Every perfume is unique and could be made with as many as one thousand ingredients. The ingredients themselves vary in staying power and come to the fore at different stages of the perfume's "life" on the skin (The H & R Book, 1985). Perfumers distinguish between:


The Top Note. This is the initial impression of a fragrance. Light, fresh & floral elements form the top note. Examples of top note materials are citrus oils, ester-volatile chemicals (floral-fruity notes) and volatile essential oils.

The Middle Note. This connotes the body/character of a fragrance. Warm, floral, fruity, spicy elements form the middle note. Examples of middle note materials are most essential oils, absolutes, most floral or spicy elements & aldehydes.

The Base Note. This delivers the depth/foundation of the fragrance and has the most lasting effect. Rich, sweet, woody, animalic notes form the base note. Examples of base notes are resins, musk & other animal products, woody chemicals/essential oils, mossy & balsamic products.

A typical fragrance structure is shown in Fig 1.

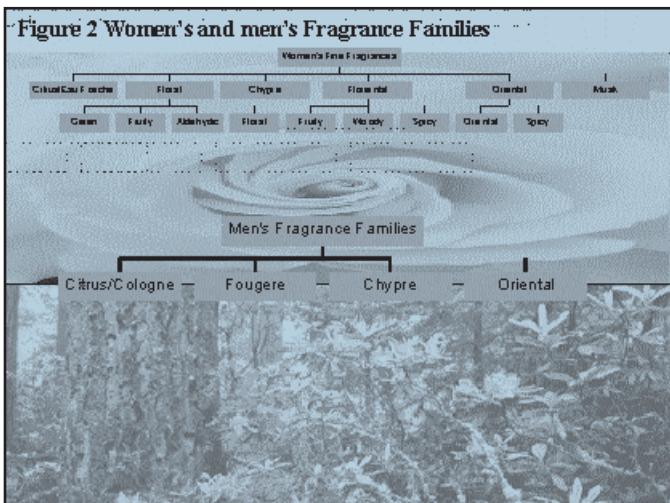
Figure 1 The Fragrance Structure

Classification of Fragrances

Various classifications of perfumes have been published over the years. Edwards published "Fragrances of the World" and classified about 2,700 fragrances (Edwards, 2001).

At IFF, fragrances are assigned to their respective fragrance families. The women's fragrances are classified into six main families - Citrus/Eau Fraiche, Floral, Chypre, Floriental, Oriental & Musk. The families floral, floriental and oriental are further subdivided as shown below:

Fragrances continued


Floral: Floral green, Floral fruity, Floral aldehydic and Floral floral.

Floriental: Floriental fruity, Floriental woody and Floriental spicy

Oriental: Oriental oriental, and Oriental spicy.

The men's fragrances are classified into four main families: Citrus/Cologne, Fougere, Chypre and Oriental.

The women's and men's fragrance families are shown in Figure 2.

Description of Fragrances

Fragrances are usually described in terms of "notes" (similar to "notes" in music). Firstly, the fragrance is assigned to its fragrance family (e.g. Floral). Then, within this family, one identifies the top notes, middle notes and finally, the base notes.

Fragrance Applications

Beside application as fine fragrances, fragrances have important applications within the fast moving consumer goods industry especially in fabric care, personal care, personal wash and home care. A further application of fragrances is their use as malodor counteractants and masking agents.

Benefits of Fragrances

Fragrances are powerful emotional ingredients. Pleasure, wellness, and sensuality are strong, universal human desires and emotions. Since 1982, IFF has pioneered the concept of an Aroma Science program, studying the effects of fragrance and fragrance ingredients on human emotions. IFF developed tools to demonstrate how to build fragrances that fit a desired emotional outcome and product concept. Some are described below:

- Mood-Mapping™ techniques identify individual fragrance combinations affecting specific human emotions (Warren & Warrenburg, 1993)
- Mood Mapping database of over 1,500 perfumery materials, accords, and finished fragrances.
- Consumer Fragrance Thesaurus allows insights derived from consumers

to the perfumer's desk, speeds the development of a new fragrance and focuses on the most fruitful directions (Warrenburg, S. 1999)

- Measurement of stress-reducing effects of fragrance
- Measurement of the effect of fragrance on social interactions and developing social-enhancing fragrances

There are numerous benefits of fragrances available in literature. Some positive effects claimed for fragrances are on creativity, memory, social behavior, work environment & performance.

More recently, IFF has been studying the effect of pheromones on human sexual attraction. A pheromone is a form of chemical communication between members of the same species. The preliminary findings within IFF indicate that pheromones incorporated into a suitable fragrance could enhance sexual "chemistry" between couples.

Conclusion

Fragrances are a key component of many consumable products. Fragrance is what drives the sale of many cosmetics and toiletries, and marketers aims to produce a range of fragrance variants in order to satisfy the breadth of consumer preferences.

The fragrance market is further enhanced by the increase in production of cosmetics and toiletries worldwide and the growing interest in aromatherapy. Growth is expected to continue with the aging population in the developed world and increased per capita income in the developing world.

What basically started out as a masking agent for unpleasant odors and a means to heal and seduce has turned into a highly competitive, multi-billion dollar industry. It is estimated that the global demand for flavors and fragrances is expected to grow 5.4 percent per annum to US\$18.4 billion in 2004 (The Freedonia Group, Inc.).

Acknowledgements

The author wishes to thank Angela Goodman and Rhoda Mahon, IFF Australia, for their help and support.

The author is a Masters degree research student, supervised by Dr. Jane Paton and Assoc. Prof. Graham Bell, in the School of Chemical Sciences, University of New South Wales, Australia.

REFERENCES

Boelens, M. & Boelens, R. (2001) Classification of perfumes and fragrances. *Perfumer & Flavorist*, **26**, 28-38.

Edwards, M. (2001) *Fragrances of the World*, 2001.

Herman, S.J. (2002) *Fragrance Application: A Survival Guide*. USA: Allured Publishing Corporation.

Shiftan, E. (1973) Review of the History of Perfumes. Presented at the 2nd Joint Perfumery Symposium, British Society of Perfumers and the Society of Cosmetic Chemists of Great Britain, Eastbourne, May, 1973.

The H & R Book Fragrance Guide- Masculine Notes, Fragrances on the International Market. London: Johnson Publications Limited, 1985.

Freedonia Group Report: 1372 (March 2001) World Flavor and Fragrances to 2004. The Freedonia Group, Inc., 767 Beta Drive, Cleveland, Ohio, US. [www.freedoniagroup.com]

Towle, J. (2001) Perfume creation using naturals. *Personal Care*, July, 42-43.

Warren, C. and Warrenburg, S. (1993) Mood benefits of fragrance. *Perfumer & Flavorist*, **18**, 9-16.

Warrenburg, S. (1999) The Consumer Fragrance Thesaurus: Putting consumer insights into the perfumer's hands, *Aroma-Chology Review*, **8**, 4-7.

Warrenburg, S. (2000) Measurement of emotion in olfactory research, Proceedings of the American Chemical Society Symposium on Taste, invited chapter under review ■

Human Pheromones:

Oxymoron, Marketing, Maya, or Meaningful Messages? continued

A. Is there Evidence for Human Responses to Pheromones?

Figure 1 summarizes the interpretation of the available evidence that addresses human responses to pheromones. All available examples are not included because of space limitations.

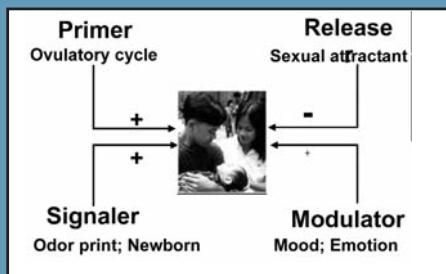


Figure 1. Summary of biomedical evidence for human pheromones. Key: + = strong evidence; + = weak evidence; - = no evidence.

1. Primers. In humans, several studies have indicated that interpersonal relations among women and between men and women may alter reproductive physiology, suggesting the presence of primer pheromones. These effects include menstrual synchrony among women, first documented by in all-women groups (McClintock, 1971) and later replicated in a variety of other situations (for reviews see McClintock, 2000; Wysocki and Preti, 2000).

Russell and colleagues (1980) were the first to present evidence suggesting that menstrual synchrony could be mediated by axillary (underarm) secretions. Results of additional studies suggested that axillary secretions from donor women could be

used to bring other women into synchrony with the donors (Preti et al., 1986). Male axillary secretions also appear to affect women with a history of irregular cycle lengths: After exposure to the secretions, their cycles shifted toward the normal cycle-length of 29.5 ± 3 days (Cutler et al., 1986).

Two further studies focused upon effects of female axillary secretions. Stern and McClintock (1998) reported that women with normal menstrual cycles exposed to underarm secretions from women in their follicular phase (the days following menses but several days prior to ovulation), shortened the length of the recipient's menstrual-cycle. Exposing the same women to secretions collected near the time of

cont. pg 7

Viscometers or Rheometers

...a model to suit the differing needs of QA,QC or R&D Applications

ViscoTester VT6/7 (Top Left)
Rotational viscometer for the fast determination of viscosity.

ViscoTester VT550 (Bottom Left)
Rotational viscometer provides flow curves, yield point, time curve and temperature tests.

RheoStress 1 (Top Right) Controlled stress rheometer provides creep and recovery, dynamic measurements, as well as viscosity, yield point and temperature tests.

RheoStress 600 (Bottom Right) Modular research grade rheometer provides shear and stress controlled flow curves, stress controlled ramps, creep and recovery, oscillating tests, temperature control tests and more.

For all your material characterisation, temperature control & service needs contact:

Ph: 03 5368 7429
Fax: 03 5368 7439
Email: info@rheologysolutions.com

or visit our website at www.rheologysolutions.com

Rheology Solutions is a Premium Partner with Thermo Material Characterization in 2002

Thinking of Sensory Software? Arrow Scientific!

FIZZ sensory analysis and consumer test management system.

FIZZ allows you to design your sensory studies, automate answer collection & analyse results.

Sold & Supported Locally

Think of Arrow Scientific!

phone (02) 9564 1065

fax (02) 9564 1813

www.arrowscientific.com.au

NEWS

Heron Island Meeting

96 people have gathered at Heron Island in December 2002 for the Fifth Annual Scientific Meeting of the Australasian Association for ChemoSensory Science.

There are 61 active conference participants giving 59 papers in 12 oral and poster sessions. The plenary lecture will be given by Prof. Sophie Dove, of University of Queensland's Marine Biology Research Centre, which has a permanent research station at the island. She will introduce the chemical senses community to the fine science being done at the Barrier Reef, and her special interest in photosensitivity and proteins.

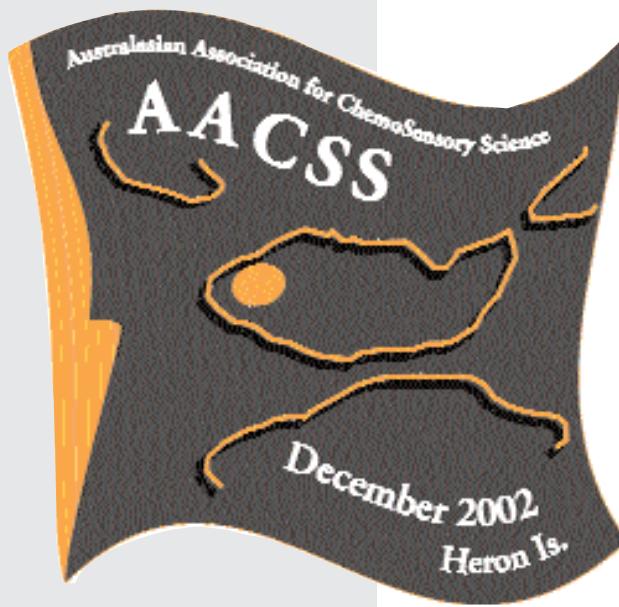
This is the largest regional gathering in 30 years of ChemoSensory experts. Participants are coming from Japan, Sweden, France, the Netherlands, Germany, UK, USA, Australia, New Zealand and Bermuda!

The Meeting's abstracts will be published in the next issue of *ChemoSense*.

Sponsors include Goodman Fielder and Carlton United Brewery.

Human Pheromones:

Oxymoron, Marketing, Maya, or Meaningful Messages? continued


ovulation of the donors, lengthened the recipient's menstrual-cycle. In a study by Shinohara et al. (2001), exposing women to underarm secretions, obtained from other women, changed the frequency of pulsing of luteinizing hormone (LH). Studies that have sought to provide a measure of primer pheromone activity by looking for a change in the length of the menstrual cycle have received criticism for statistical and/or methodological errors (Doty, 1981; Wilson, 1987, 1992; Weller and Weller, 1993). Other criticisms have been fueled by the intra- and inter-subject variability found in normal, consecutive menstrual cycles (Strassmann, 1999; Schank, 2000).

New evidence for a primer effect in females comes from the authors' laboratory (Preti et al., in press). Extracts of underarm sweat from males were wiped under the nose of normally cycling women in the early to mid-follicular phase of their menstrual cycle, three times during six hours. Plasma LH was monitored every 10 min. Relative to measures in a six-hour control phase, the sweat extract significantly advanced the upcoming LH pulse. In natural situations, periodic, close contact with a male may modulate the female's menstrual cycle by affecting the hypothalamic LHRH pulse generator.

2. Releasers. Excepting the thousands of web pages devoted to the topic (a Google search, using "human AND pheromone" at the time of this contribution revealed 21,402 hits), there is no good biomedical evidence for human releaser pheromones. Cutler et al., (1998) would have us believe differently (see critique by Wysocki and Preti, 1998). Although many products are being sold with human sex attraction as the goal (many contain pig pheromones androstenone or androstenol), the advice most appropriate to the consumer is *caveat emptor*.

3. Signalers. In humans, there is good evidence that mothers can recognize their children by smell alone (Kaitz et al., 1987). Furthermore, newborns can recognize a lactating female (Makin and Porter, 1989) and soon come to recognize their own mother by smell (Winberg and Porter, 1998). Actually, the odors associated with the breast of a lactating mother approximate a releaser pheromone in humans: Infants were attracted to the breast odors of their mother and moved in the direction of the odors (Varendi and Porter, 2001).

Information about MHC can be extracted from odor cues (Yamazaki et al., 1998-99; Singh, 2001). Indeed, there is evidence accumulating to suggest that, among humans, MHC odors may influence the choice of ones mate (Eklund et al., 2000; Jacob et al., 2002). Here too, these MHC-associated odors may become more

Human Pheromones: Oxymoron, Marketing, Maya, or Meaningful

releaser-like than signaler, but much more research needs to be performed before this happens.

4. Modulators. When some people experience a fearful film their odor differs from what it is when viewing comic sequences (Chen and Haviland-Jones, 1999, 2000; Ackerl et al., 2002). Other people can discriminate these odors. How this generalizes to other emotional states and whether the emotional state of others is modified by these chemical signals remain to be determined.

In related work, it was recently noted that females became significantly less tense and more relaxed when they were exposed to an extract of underarm sweat from males (Prete et al., in press). These females were the same as those described above in the discussion of primer pheromones. The hospital setting in which the females were tested was by no means optimal for noting shifts in affect. Perhaps under natural settings additional effects would be noted.

D. Candidate Human Pheromones: Chemistry and Structures

Prete et al. (in press) presented evidence that primer and modulator pheromones reside in the human axillae. Studies of axillary chemistry have demonstrated that a complex mixture of volatile and non-volatile compounds can be found there (Prete et al. 1987; Zeng et al., 1991; 1992, 1996). Despite what is advertised on various web-sites and suggested in certain peer-reviewed publications (Grosser et al., 2000; Savic et al., 2001; Sobel et al., 1999), there are no bioassay-guided studies that reduce the complex mixture of axillary compounds to one or more compounds with pheromonal function.

The authors have suggested above that

pheromonal information may be conveyed by odorants. Unfortunately, myriad potential candidates are present (Prete et al., in press). Compounds present in the human axillae that have been most commonly assumed to be human pheromones are the volatile steroids androstenone, androstenol and 4, 16-androstadienone. The concentration and biogenesis of these compounds have been extensively studied (Gower and Ruparelia, 1993 and references cited therein; Rennie et al., 1991), and they have been shown to have primer (Shinohara et al., 2000) and modulator (Jacob and McClintock, 2000; Wilson et al., under review) pheromone activity when used at concentrations 1,000-fold above endogenous level. One preliminary study reported no effects when androstadienone was used at sub-threshold levels that approximated physiological levels (Lundstrom and Olsson 2002).

The odorants that characterize the axillae have been demonstrated to be C6-C11 saturated, branched, and unsaturated acids. In terms of relative abundance, these acids, in particular (*E*)-3-methyl-2-hexenoic (*E*-3M2H), are present in men in far greater quantities than are the volatile steroids noted above (~ 700:1; Zeng et al., 1991; 1996). In women, the straight-chain acids are present in greater relative abundance than is *E*-3M2H (Zeng et al., 1996). For people who can smell them (there are specific anosmias to both), *E*-3M2H and androstenone have low olfactory thresholds (Wysocki and Beauchamp 1984; Baydar et al., 1992; Wysocki et al., 1993).

The characteristic axillary odor is formed from the interactions between odorless, water soluble, precursor molecules, found in apocrine gland secretions (Zeng et al., 1992; 1996; 1996a), with cutaneous, axillary microorganisms (Labows et al., 1982). These

precursors are Apocrine Secretion Odor-Binding proteins: ASOB1, (apparent molecular weight 45 kDa) and ASOB2 (apparent molecular weight 26 kDa). These proteins carry 3M2H to the skin surface. The polypeptide chain of ASOB2 is identical to apolipoprotein D (apoD), a known member of the lipocalin proteins (Zeng et al 1996a). Hence, a ligand for apocrine apoD (ASOB2) is 3M2H.

The chemistry of axillary odor production suggests a similarity between human axillary secretions and non-human mammalian odor sources where lipocalins carry chemical signals used in pheromonal communication. In pigs (Spinelli et al., 2002) and hamsters (Singer et al., 1989), volatile molecules appear to be bound to lipocalin proteins that transport them and are in part responsible for some of the activity. Hence, both the chemistry of axillary secretions and their effects upon other people appear to be analogous to other mammalian primer pheromone systems. However, despite the interesting comparisons and analogies, only bioassay-guided isolation of components from the complex axillary secretion will identify which of the many compounds are pheromones.

E. Sensors in the Nose

Excluding marine mammals and old world primates, the general plan of the mammalian nose contains five possible neural routes for afferent information to enter the brain. These include 1) the olfactory epithelium with its ciliated receptor cells and associated olfactory nerves; 2) the vomeronasal organ with its microvilli-studded receptor cells and vomeronasal nerves; 3) the trigeminal nerve, which conveys information about chemical irritancy; 4) the septal organ and its associated receptor cells, which are anatomically and

Messages? continued

physiologically distinct from receptor cells found in the olfactory epithelium proper (Graziadei, 1977; Marshall and Maruniak, 1986); and 5) the terminal nerve (nervus terminalis), which contains LHRH-positive neurons (Wirsig-Wiechmann, 2001).

F. Which System Is Devoted to Pheromone Reception?

Given what is known about trigeminal afferents (Alimohammadi and Silver, 2002), it is safe to conclude that most likely it is not involved in the reception of pheromones. Chemosensitive afferents of this system appear to convey information about chemical irritation (chemesthesia).

Very little information is available about function of the terminal nerve; however, it appears not to be responsible for pheromonal detection in male hamsters (Wirsig and Leonard, 1987; Wirsig-Wiechmann, 1993). Function of the terminal nerve in other species, including humans, remains untested.

No direct evaluations of septal organ function in pheromonal reception have been published; however, in male hamsters, elimination of both olfactory epithelial and septal organ receptors (leaving an intact vomeronasal organ) eliminates up-regulation of fos expression (a measure of neuronal activation) in the brain in response to female pheromones (Swann et al., 2001).

Interestingly, eliminating the vomeronasal organ did not affect fos expression. The males in these experiments had had sexual experience with females prior to the experiment. Such experience by male hamsters blunts, if not eliminates, the effect of removing the vomeronasal organ (VNO) on both fos expression in the brain and sexual behavior (Fewell and Meredith, 2002).

Although we cannot rule out participation of

the septal organ, the more likely route of entry of chemosensory information in sexually experienced male hamsters lacking a VNO, i.e., VNX, is via olfaction. As Mike Meredith's laboratory has shown repeatedly, when it comes to sex and pheromones in male hamsters, experience is a great teacher. In sexually inexperienced males, the VNO appears crucial for the reception of pheromones from the female; however, with experience, the olfactory system assumes additional control and information, via either the VNO or olfactory epithelium, can support sexual behavior. Thus, we must conclude that both systems appear to support reception of pheromones; however, after experience, the apparent pheromonal effects via olfaction may be learned responses to non-pheromonal odors associated with female hamsters. Pheromonal learning of this type was demonstrated some time ago (Nyby et al., 1978). The basis for such learning apparently resides within the vomeronasal system: stimulation of this system is inherently rewarding (Beauchamp et al., 1985); hence, odorants associated with stimulation of the vomeronasal system can themselves become pheromone-like by being paired with the true pheromone.

There is excellent evidence that the VNO contains receptors for pheromones (Leinders-Zufall et al., 2000; Zufall et al., 2002) and that these receptors do indeed function as pheromone receptors (Del Punta et al., 2002). The preponderance of such reports has erroneously led many, from reporters to biomedical researchers, to conclude that the VNO is the pheromone receptor organ, to the exclusion of other afferent inputs to the brain. There are three false corollaries that follow from this assumption. False corollary 1: Substances that stimulate the VNO must therefore be pheromones. This conclusion has been

refuted by demonstrating that VNO receptors respond to *off-the shelf chemicals* (Tucker, 1971; Muller 1971; Sam et al., 2001). False corollary 2: If the VNO is used by an animal, it must be processing pheromonal information. Excellent refutations can be found in the work by Halpern and co-workers who show that the VNO is used by snakes to track the chemical trail of their prey (Martinez-Marcos et al., 2002). False corollary 3: To be a pheromone a compound must function through the vomeronasal system. There are reports showing that the VNO is not necessary for an animal to exhibit a response to a pheromone. The sow's response to the boar pheromone, androstenone, is an excellent example (Dorries et al., 1997). Others include courtship vocalizations in mice (Sipos et al., 1995), perhaps maternal behavior of ewes (Levy et al., 1995; c.f., Booth and Katz 2000), and socio-sexual behaviors in the lesser mouse lemur, a prosimian primate (Aujard, 1997).

G. Human Pheromones and the VNO?

Table 1. Comparative Summary of Biomedical Evidence for a Functional Vomeronasal System in Mice (Representing Non-Primate, Non-Marine Mammals) and Humans.

OBSERVATION	MOUSE		HUMAN
	FETUS	ADULT	
VNO	+	+	+
Sensory cells	+	?	-
Receptor genes	+	?	-
Receptor transduction	+	?	**
Nerves to brain	+	+	-
Brain region (AOB)***	+	?	-

Key: + = good evidence for presence; - = good evidence for absence; ? = not known.

* One V1R1L gene is expressed in the olfactory epithelium (Rodriguez et al., 2000).

** TRP2, which directs construction of a Ca⁺⁺ channel in the membrane of receptor cells in the VNO, is a pseudogene in humans.

*** AOB = accessory olfactory bulb; the first relay and integration site within the central nervous system to process afferent information from the VNO.

Human Pheromones: Oxymoron, Marketing, Maya, or Meaningful Messages? continued

Another false conclusion follows from the last false corollary above, viz., organisms that lack a functional VNO cannot use a pheromonal communication system because they lack pheromone receptors. There is good evidence that humans lack a functional VNO (reviewed by Wysocki and Preti, 2000; Meredith, 2001), at least in the way we understand function from studies in non-primates, e.g., mice (see Table 1).

However, as noted above, there is also a body of literature supporting the view that humans respond to pheromones. If humans do not have a functional VNO, then what system supports the receptor end of a pheromonal communication system? We suggest that olfaction per se is capable of extracting pheromonal information from odorants, if it is present. This may even occur at a subconscious level (Jacob and McClintock, 2000; Wilson et al., submitted). Whether human pheromonal communication is inconsequential or is as important as the Hindu concept of Maya (the power that deludes) remains to be determined.

REFERENCES

Ackerl K., Atzmüller M. and Grammer K. (2002) The scent of fear, *Neuroendocrinol. Lett.* **23**: 79-84.

Alimohammadi H. and Silver W. L. (2002) Chemesthesia: hot and cold mechanisms, *ChemoSense* **4**: 1-2, 4-6,9.

Aujard F. (1997) Effect of vomeronasal organ removal on male sociosexual responses to female in a prosimian primate (*Microcebus murinus*), *Physiol. Behav.* **62**: 1003-1008.

Baydar A. E., Petrikzka M. and Schott M. P. (1992) Perception of characteristic axillary odors, *Perf. Flavorist* **17**: 2-9.

Beauchamp G. K., Wysocki C. J. and Wellington, J.L. (1985) Extinction of response to urine odor as a consequence of vomeronasal organ removal in male guinea pigs., *Behav. Neurosci.* **99**: 950-955.

Booth K.K. and Katz L. S. (2000) Role of the vomeronasal organ in neonatal offspring recognition in sheep, *Biol. Reprod.* **63**: 953-958.

Chen D. and Haviland-Jones J. (1999) Rapid mood change and human odors, *Physiol. Behav.* **68**: 241-250.

Chen D. and Haviland-Jones J. (2000) Human olfactory communication of emotion, *Percept. Mot. Skills* **91**: 771-781.

Cutler W. B., Friedmann E. and McCoy N. L. (1998) Pheromonal influences on sociosexual behavior in men, *Arch. Sex. Behav.* **27**: 1-13.

Cutler W. B., Preti G., Krieger A. M., Huggins G. R., Garcia C. R. and Lawley H. J. (1986) Human axillary secretions influence women's menstrual cycles: the role of donor extract from men, *Horm. Behav.* **20**: 463-473.

Del Punta K., Leinders-Zufall T., Rodriguez I., Jukam D., Wysocki C. J., Ogawa S., Zufall F. and Mombaerts P. (2002) Deficient pheromone responses in mice lacking a cluster of vomeronasal receptor genes, *Nature* **419**: 70-74.

Dorries K. M., Adkins-Regan E. and Halpern B. P. (1997) Sensitivity and behavioral responses to the pheromone androstenone are not mediated by the vomeronasal organ in domestic pigs, *Brain Behav. Evol.* **49**: 53-62.

Doty R. L. (1981) Olfactory communication in humans, *Chem. Senses* **6**: 351-376.

Eklund A. C., Belchak M. M., Lapidos K., Raha-Chowdhury R. and Ober C. (2000) Polymorphisms in the HLA-linked olfactory receptor genes in the Hutterites, *Hum. Immunol.* **61**: 711-717.

Gower D. B. and Ruparelia B. A. (1993) Olfaction in humans with special reference to odorous 16-androstenes: their occurrence, perception and possible social psychological and sexual impact, *J. Endocrinol.* **137**: 167-187.

Graziadei P. P. C. (1977) Functional anatomy of the mammalian chemoreceptor system. In: D. Müller-Schwarze and M. M. Mozell (Eds.), *Chemical Signals in Bertebrates*, New York: Plenum Press, pp 435-454.

Grosser B. J., Monti-Bloch L., Jennings-White C. and Berliner, D. L. (2000) Behavioral and electrophysiological effects of androstadienone, a human pheromone, *Psychoneuroendocrinol.* **25**: 289-299.

Jacob S. and McClintock M. K. (2000) Psychological state and mood effects of steroidol chemosignals in women and men, *Horm. Behav.* **37**: 57-78.

Jacob S., McClintock M. K., Zelano B. and Ober C. (2002) Paternally inherited HLA alleles are associated with women's choice of male odor, *Nat. Genet.* **30**: 175-179.

Kaitz M., Good A., Rokem A. M. and Eidelman A. I. (1987) Mothers' recognition of their newborns by olfactory cues, *Dev. Psychobiol.* **20**: 587-591.

Karlson P. and Lüscher M. (1959) "Pheromones": a new term for a class of biologically active substances, *Nature* **183**: 55-56.

Labows J. B., McGinley K. J. and Kligman A. M. (1982) Perspectives on axillary odor, *J. Soc. Cosmet. Chem.* **34**: 193-202.

Leinders-Zufall T., Lane A. P., Puche A. C., Ma W., Novotny M. V., Shipley M. T. and Zufall F. (2000) Ultrasensitive pheromone detection by mammalian vomeronasal neurons, *Nature* **405**: 792-796.

Levy F., Locatelli A., Piketty V., Tillet Y. and Poindron P. (1995) Involvement of the main but not the accessory olfactory system in maternal behavior of primiparous and multiparous ewes, *Physiol. Behav.* **57**: 97-104.

Lundstrom J. N. and Olsson M. J. (2002) Psychological effects of subthreshold exposure to 4, 16-androstadien-3-one on women, *Chem. Senses* **27**: 668.

Makin J. W. and Porter R. H. (1989) Attractiveness of lactating females' breast odors to neonates, *Child Dev.* **60**: 803-810.

Marshall D. A. and Maruniak J. A. (1986) Masera's organ responds to odorants, *Brain Res.* **366**: 329-332.

Martinez-Marcos A., Lanuza E. and Halpern M. (2002) Neural substrates for processing chemosensory information in snakes, *Brain Res. Bull.* **57**: 543-546.

McClintock M. K. (1971) Menstrual synchrony and suppression, *Nature* **229**: 244-245.

McClintock M. K. (2000) Human Pheromones: primers, releasers, signalers, or modulators? In: K. Wallen and J. E. Schneider (Eds.), *Reproduction in Context*, Cambridge, MA: MIT Press, pp. 355-420.

Meredith M. (2001) Human vomeronasal organ function: a critical review of best and worst cases, *Chem. Senses* **26**: 433-45.

Nyby J., Whitney G., Schmitz S. and Dizinno G. (1978) Postpubertal experience establishes signal value of mammalian sex odor, *Behav. Biol.* **22**: 545-552.

Preti G., Cutler W. B., Christensen C. M., Lawley H. J., Huggins G. R. and Garcia C. R. (1987) Human axillary extracts: Analysis of compounds from samples which influence menstrual timing, *J. Chem. Ecol.* **13**: 717-731.

Preti G., Cutler W. B., Huggins G. R., Garcia C. R. and Lawley H. J. (1986) Human axillary secretions influence women's menstrual cycles: the role of donor extracts from women, *Horm. Behav.* **20**: 474-482.

Preti G., Wysocki C. J., Barnhart K. T., Sondheimer, S. J. and Leyden J. J. (in press) Male axillary extracts contain pheromones that affect pulsatile secretion of luteinizing hormone and mood in women recipients, *Biol. Reprod.*

Rennie P. J., Gower D. B. and Holland K. T. (1991) In-vitro and in-vivo studies of human axillary odour and the cutaneous microflora *Brit. J. Dermatol.* **124**: 596-602.

Rodriguez I. and Mombaerts P. (2002) Novel human vomeronasal receptor-like genes reveal species-specific families, *Curr. Biol.* **12**: R409-411.

Rodriguez I., Greer C. A., Mok M. Y. and Mombaerts P. (2000) A putative pheromone receptor gene expressed in human olfactory mucosa, *Nat. Genet.* **26**: 18-19.

Russell M. J., Switz G. M. and Thompson K. (1980) Olfactory influences on the human menstrual cycle, *Pharmacol. Biochem. Behav.* **13**: 737-738.

Sam M., Vora S., Malnic B., Ma W., Novotny M. V. and Buck L. B. (2001) Neuropharmacology. Odorants may arouse instinctive behaviours, *Nature* **412**: 142.

Savic I., Berglund H., Gulyas B. and Roland P. (2001) Smelling of odorous sex hormone-like compounds causes sex-differentiated hypothalamic activations in humans, *Neuron* **31**: 661-668.

Schank J. C. (2000) Menstrual-cycle variability and measurement: further cause for doubt, *Psychoneuroendocrinol.* **25**: 837-847.

Shinohara K., Morofushi M., Funabashi T., Mitsushima D. and Kimura F. (2000) Effects of 5 α -androst-16-en-3 α -ol on the pulsatile secretion of luteinizing hormone in human females, *Chem. Senses* **25**: 465-467.

Shinohara K., Morofushi M., Funabashi T. and Kimura, F. (2001) Axillary pheromones modulate pulsatile LH secretion in humans, *Neuroreport* **12**: 893-895.

Singer A. G., Clancy A. N. and Macrides F. (1989) Conspecific and heterospecific proteins related to aphrodisin lack aphrodisiac activity in male hamsters, *Chem. Senses* **14**: 565-575.

Singh P. B. (2001) Chemosensation and genetic individuality, *Reproduction* **121**: 529-539.

Sipos M. L., Wysocki C. J., Nyby J. G., Wysocki L. and Nemura T. A. (1995) An ephemeral pheromone of female house mice: perception

Upcoming Events

7-11 December 2002

Australasian Association for ChemoSensory Science (AACSS)
Fifth Annual Scientific Meeting Heron Island, Queensland, Australia
Contacts: Wendy.Burchmore@tq.com.au
g.bell@unsw.edu.au

18 - 20 January 2003

Progress and Directions in Olfactory Development
Tucson, Arizona, USA
www.neurobio.arizona.edu/olfactory_development

6-10 April 2003

Australian Water Association Ozwater Convention and Exhibition "Innovations in Water"
Burswood, Perth, Western Australia
www.awaozwater.net

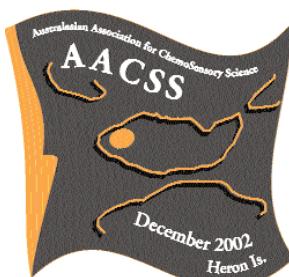
9-13 April 2003

ACheMS XXV
Sarasota, Florida, USA
www.achems.org/index.html

20-24 July, 2003

The Pangborn Sensory Science Symposium "A Sensory Revolution"
Boston, MA, USA
Deadline for papers: 31 January 2003
www.Pangborn2003.com

10 - 15 August 2003


39th IUPAC Congress and 86th Conference of the Canadian Society for Chemistry
Ottawa, Canada
www.iupac2003.org

24-27 August 2003

"2003 Foods For Life", 36th AIFST Convention and 2nd World Symposium of Dairy Products in Human Health and Nutrition plus DIAA Dairy Science World Series Conference
Melbourne, Australia
www.2003foodsforlife.com

5-9 July, 2004

XIII International Symposium on Olfaction and Taste (ISOT) / JASTS
Kyoto, Japan
Jasts@hus.osaka-u.ac.jp

Human Pheromones:

Oxymoron, Marketing, Maya, or Meaningful Messages? continued

REFERENCES contin.

via the main and accessory olfactory systems, *Physiol. Behav.* **58**: 529-34.

Sobel N., Prabhakaran V., Hartley C. A. Desmond J. E. Glover G. H., Sullivan E. V. and Gabrieli J. D. E. (1999) Blind smell: brain activation induced by an undetected air-borne chemical, *Brain* **122**: 209-217.

Spinelli S., Vincent F., Pelosi P., Tegoni M. and Cambillau, C. (2002) Boar salivary lipocalin, *Eur. J. Biochem.* **269**: 2449-2456.

Stern K. and McClintock M. K. (1998) Regulation of ovulation by human pheromones, *Nature* **392**: 177-179.

Strassmann B. I. (1999) Menstrual synchrony pheromones: cause for doubt, *Hum. Reprod.* **14**: 579-580.

Swann J., Rahaman F., Bijak T. and Fiber J. (2001) The main olfactory system mediates pheromone-induced fos expression in the extended amygdala and preoptic area of the male Syrian hamster, *Neuroscience* **105**: 695-706.

Tucker, D. (1971) Nonolfactory responses from the nasal cavity: Jacobson's Organ and the trigeminal system. In L. M. Beidler (Ed.), *Handbook of Sensory Physiology*, Vol. 4., Part I, New York: Springer-Verlag, pp. 151-181.

Müller, M. (1971) Vergleichende elektrophysiologische Untersuchungen an den Sinnesepithelien des Jacobson'schen Organs und de Nase von Amphibien (Rana), Reptilian (Lacerta) and Saugetieren (Mus), *Z. vergl. Physiol.* **72**: 370-385.

Varendi H. and Porter R. H. (2001) Breast odour as the only maternal stimulus elicits crawling towards the odour source, *Acta Paediatr.* **90**: 372-375.

Weller L. and Weller A. (1993) Human menstrual synchrony: a critical assessment, *Neurosci. Biobehav. Rev.* **17**: 427-439.

Wilson H. C. (1987) Female axillary secretions influence women's menstrual cycles: a critique, *Horm. Behav.* **21**: 536-546.

Wilson H. C. (1992) A critical review of menstrual synchrony, *Psychoneuroendocrinol.* **17**: 565-591.

Wilson P., Haviland-Jones J., Wysocki C.J., Warrenburg S. and Christensen C. (under review) Putative pheromone affects courtship-like behavior in women, *Horm Behav.*

Winberg J. and Porter R. H. (1998) Olfaction and human neonatal behaviour: clinical implications, *Acta Paediatr.* **87**: 6-10.

Wirsig-Wiechmann C. R. (1993) Nervus terminalis lesions: I. No effect on pheromonally induced testosterone surges in the male hamster, *Physiol. Behav.* **53**: 251-255.

Wirsig C. R. and Leonard C. M. (1987) Terminal nerve damage impairs the mating behavior of the male hamster, *Brain Res.* **417**: 293-303.

Wirsig-Wiechmann C. R. (2001) Function of gonadotropin-releasing hormone in olfaction, *Keio J. Med.* **50**: 81-85.

Wysocki C. J. and Beauchamp G. K. (1984) Ability to smell androstenone is genetically determined, *Proc. Natl. Acad. Sci. USA.* **81**: 7976-7978.

Wysocki C. J. and Preti G. (2000) Human odors and their perception, *Jpn. J. Taste Smell Res.* **7**: 19-42.

Wysocki C. J., Zeng, X.-N. and Preti G. (1993) Specific anosmia and olfactory sensitivity to 3-methyl-2-hexenoic acid: a major component of human axillary odor, *Chem. Senses* **18**: 652-653.

Wysocki C. J. and Preti G. (1998) Pheromonal influences, *Arch. Sex. Behav.* **27**: 627-629.

Yamazaki K., Singer A. and Beauchamp G. K. (1998-99) Origin, functions and chemistry of H-2 regulated odorants, *Genetica* **104**: 235-240.

Zeng C., Spielman A. I., Vowels B. R., Leyden J. J., Biemann K. and Preti G. (1996a) A human axillary odorant is carried by apolipoprotein D, *Proc. Natl. Acad. Sci. USA.* **93**: 6626-6630.

Zeng X.-N., Leyden J. J., Brand J. G., Spielman A. I., McGinley K. and Preti G. (1992) An investigation of human apocrine gland secretion for axillary odor precursors, *J. Chem. Ecol.* **18**: 1039-1055.

Zeng X.-N., Leyden J. J., Lawley H. J., Sawano K., Nohara I. and Preti G. (1991) Analysis of characteristic odors from human male axillae, *J. Chem. Ecol.* **17**: 1469-1492.

Zeng X.-N., Leyden J. J., Spielman A. I., and Preti G. (1996) Analysis of the characteristic human female axillary odors: qualitative comparison to males, *J. Chem. Ecol.* **22**: 237-257.

Zufall F., Kelliher K. R. and Leinders-Zufall T. (2002) Pheromone detection by mammalian vomeronasal neurons, *Microsc. Res. Tech.* **58**: 251-60 ■

University of
South Australia

SMART LINK

NATIONAL INSTITUTE FOR MANUFACTURING MANAGEMENT

Flexibility to meet the needs of industry

A program which aims to give manufacturers and processors the ability to reach their full potential - but with the flexibility to meet seasonal variations in workload - is now available nationally.

Smartlink at the University of South Australia, has joined forces with organisations around the country to promote the program and support students with their study.

As Linda Moscrop, the University of South Australia's Smartlink program manager, says, "Unfortunately, few programs recognise supervisors and managers need flexibility if they are going to study. They need to be able to drop out of a program during high workload periods - such as harvest - and pick it up again when things quieten down. Also, those outside the cities often miss out on programs like this, which is why Smartlink can now be undertaken totally online, with local support.

"Having local educational support is really valuable for students. The lecturer is there for questions about content but local support can help with all the other issues which crop up when you take up university study."

The program, open to managers or supervisors with six years experience, or a degree and two years' experience, provides a combination of the technical and business skills that managers need and leads to a Graduate Certificate in Management (Manufacturing).

More information is available through the Smartlink website: www.smartlink.net.au or from Linda Moscrop, Smartlink Program Manager on (08) 8302 0172 or linda.moscrop@unisa.edu.au.

NEWS

Postdoctoral Associate for Sensory Neurobiology Group

to study cellular/molecular signaling in taste buds (e.g., Chaudhari et al, 2000, Nat.Neurosci. 3:113; Caicedo & Roper, 2001, Science 291:1557; Caicedo et al, 2002, J. Physiol in press). Seeking dedicated, enthusiastic PhD, MD, or DVM to join a team investigating transduction mechanisms and cellular microphysiology in gustatory receptor cells. Experience in calcium imaging, patch-clamp, or closely-related field required. See http://chroma.med.miami.edu/physiol/faculty_pages/sroper.htm

Salary up to \$50K depending on experience.

Send CV and names of references to Dr. S. Roper, Physiol/Biophysics (R430), U Miami Medical School, 1600 NW 10th Ave., Miami, FL 33136 USA roper@miami.edu ■

FOOD PROCESSORS, expand your business in Bundaberg, Queensland!

The Bundaberg Food Precinct is a new integrated 26 hectare development in the heart of an expanding horticultural region that produces a wide range of crops on secure, irrigated fertile land. The Precinct focuses on commercial food processing and allied industries; food innovation, research and development and potential efficiencies via shared infrastructure such as transport logistics facilities, eco-efficient industrial services, waste management, quality assurance, administration and training. Additional features include links to road, rail, sea and air transport; natural gas at Brisbane prices and fast track planning approvals through the local Planning Scheme.

Site development will be completed by early 2003 and fully serviced lots are now selling off the plan at very competitive prices. For more information contact Mr Mike Moller, Bundaberg State Development Centre on (07) 4151 9703 or e-mail mike.moller@sd.qld.gov.au

Queensland Government
State Development

[www.sd.qld.gov.au](http://sd.qld.gov.au)

20000909

NEWS

Chardonnay Kills Harmful Food Bacteria

For millennia people have made wine and valued its contribution to the enjoyment of food. As most wine drinkers know, wine often precedes the meal: a glass or two is quaffed before the arrival of the food. Why do we drink wine before and during a meal? Is there a purpose other than inebriation? Recent research suggests that wine protects the eater from food poisoning.

An Oregon State University food scientist, Mark Draesel, has found that wine, particularly white wine, has antibacterial properties that kill E. coli, salmonella and other bacteria that commonly contaminate food and make people sick. The work is scheduled to appear in *Journal of Food Technology*.

Using a model stomach (plastic bag) and sterile baby food of known composition, he added various combinations of bacteria from cultures, synthetic gastric fluid, red wine (pinot noir), white wine (chardonnay) or grape juice. He then simulated the heat and movements of the digestive process. Bacterial levels were monitored at five-minute intervals.

Chardonnay had a marked bactericidal effect. Pinot noir, which had a higher alcohol content, nevertheless had a smaller effect. The acidity of the white wine was higher and this might have been crucial (7 gm/L versus 5.5 gm/L). Even without the help of gastric fluid both wines killed all bacteria within an hour. Chardonnay killed salmonella in 14 min and E. coli in 44 min. Pinot noir took 30 min and 60 min respectively.

This evidence suggests that wine confers an advantage on human survival against malevolent food microbes that

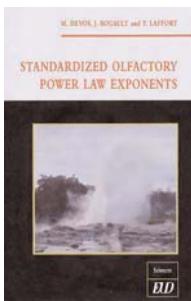
are common in food. Any process that renders food safer to consume would earn a strong place in human food practices. Wine has certainly featured prominently throughout recorded human history, in association with food and feasting.

This research suggests there may have been survival value in doing so, particularly as food poisoning can be lethal. About 76 million events of illness and 5000 deaths are attributed to food poisoning annually in the USA. This new evidence suggests a smaller proportion of these would occur after wine consumption.

The findings have yet to be corroborated from evidence derived from within the human body. Meanwhile Oregon State University has applied for a patent on the use of wine as a surface disinfectant. Wine consumers can now decide which is the better use for a particular wine: drink it or wipe down the kitchen bench with it.

Source: Food Online November 13, 2002.
www.foodonline.com

Coming up in ChemoSense


The lure of fat
 Olfactory loss
 AACSS 2002:
 58 Abstracts from Heron Island
 Bid for ISOT 2008

*Visit our Site: www.chemosensory.com

STANDARDIZED OLFACTORY POWER LAW EXPONENTS

M. DEVOS, J. ROUAULT & P. LAFFORT

This book provides a homogeneous inventory of weighted and averaged olfactory power law exponents, which are, with the olfactory thresholds, the two parameters governing the human supra-threshold perceived odorous intensity as a function of the concentration of odorants. The authors have brought together olfactory power law exponents, using direct as well indirect methods, which were until now scattered throughout the literature. Using a similar method as in *Standardized Human Olfactory Thresholds* (1990), they have applied a systematic approach of standardization. This is a comprehensive reference for scientists working in academic and industrial chemoreception, zoology, food aroma, perfumery, odorous annoyance, government health regulation and others for whom it is important to measure levels of air-borne chemicals.

Dr. Michel Devos, engineer at CNRS, studied the alimentary and the olfactory behavior in several species (humans, rats and honey-bees). Dr. Jacques Rouault, assistant professor at CNRS, studies statistics applied to biology, particularly in the case of very small population samples. Dr. Paul Laffort, honorary professor at CNRS, studies various aspects of olfaction, and particularly coding and modeling.

ORDER FORM

Université de Bourgogne
EUD
Editions Universitaires de Dijon
4, boulevard Gabriel
F - 21000 DIJON
Tel. : 33 3 80 39 53 07 / Fax : 33 3 80 39 39 51
e-mail : sud@u-bourgogne.fr

NAME : _____
First name : _____
Address : _____

Wishes to receive : _____ copy(s) of :

STANDARDIZED OLFACTORY POWER LAW EXPONENTS
M. Devos, J. Rouault and P. Laffort

ISBN 2-905965-73-8 — Price : 30 €

Official order
 Payment by pro-forma invoice
 Payment by cheque made out to Agent Comptable de l'Université de Bourgogne
 Payment by Visa or Mastercard

Payment in Euros	Total amount : _____
€	_____
Card :	_____
VISA	NUMBER : _____
MASTER CARD	NUMBER : _____
Name of card holder : _____	
Expiration date (MM/YY) : _____ / _____	
Signature : _____	

NIKKEN

NATURAL FLAVOURS SPRAY DRIED

Exporting to Asia?

Get the authentic Asian taste
with Nikken Naturally Fermented
Soy Sauce Powders
GMO Free

Other Asian Specialties

Fish Sauce Powder
Red Miso Powder
Seaweed Powder
Bonito Powder
Shrimp Powder
Mirin Powder
Teriyaki Powder

NIKKEN

The Asian Advantage

Samples, specifications and nutritional data available on all Nikken products.
Please contact Kate Harris

SOLE AGENT: AUSTRALIA & NEW ZEALAND

 B.J. HARRIS TRADING PTY LTD
PO Box 185 Seaforth NSW 2092 Australia
Phone: 61 2 9949 6655 Fax: 61 2 9949 6611
email: nikken@bjharris.com.au

E-MAIL

from Harbin, China

By Marilyn Styles

(Sensory Person in the Frozen North)

What have I done? Well may you ask! I have returned for another year in China! That question keeps recurring in my brain as I contemplate my flight on China Eastern Airlines from Beijing to Harbin, my new home. That is the airline that had 3 crashes before I left China in July...killing EVERYONE on board. Scary.

I am about to be introduced to the students who are marching in the quadrangle under the supervision of soldiers. There is a stronger communist presence here than Beijing. Last night I was treated to dinner with the college principal and the Communist Party Secretary for the Hei Long Jiang Province.

It's October 14th and it's begun to snow: OMINOUS!

They tell me the snow is about 8 days early. Eight Days! Can they predict it that closely? Brrrr! I went to look at the city of Harbin on Sunday. There are some nice parts. No bikes - the winter months are too dangerous to ride, so local travel will be on foot, bus and snowmobile from here on.

I started my classes today, reviewing the English news on the Sydney Morning Herald sight on the internet: the Bali bombs. My students shared the shock we have all felt so acutely.

Well, it turns out, that after 36 days in freezing Harbin I'm off to sunny Beijing again. We had an assembly at school Friday afternoon and the students were told that I am going. In no time they were all crying and sobbing. It is the Chinese way to take emotions to excess. The principal was crying so much he couldn't go on. The teaching assistant was crying. So what did I do? Oh horror of horrors. I made multiple gurgling sounds which was a mixture of tears and irrepressible giggles. The net result, luckily, was very acceptable wet-faced convulsions. Phew! - now I know what saving face means. China is full of surprises.

Anyway, I had a lovely meal and karaoke Friday night. Its 6.30pm, Saturday, now. I've seen the frozen park of Harbin, had a snow fight, have seen the Japanese torture chambers, the keys to the cells and the gas masks. I've had lunch and karaoke (again), back to school, more tears and kisses saying goodbye to the students. Then off to have dinner (at 4.30pm) with the admin staff and the head of the school and the secretary of the Communist party and for a treat, guess what? Yes, karaoke! If I hear "Eldelweiss", "Only you" or that song from "Titanic", about love going on and on, again before I leave Harbin, I will suggest that the people of Harbin have discovered a new torture chamber: the karaoke restaurant!

I'll e-mail again if I don't crash on the way back to Beijing.

ChemoSensory Retirements

Two prominent Australian scientists officially retired recently, but will work on and continue to contribute to their fields.

Donald Barnett, Deputy Director of the Centre for ChemoSensory Research, a Conjoint Associate Professor of Chemistry, and **Peter Barry**, Professor of Physiology and Pharmacology in the Faculty of Medicine, retired recently from their positions at the University of New South Wales.

The next day they were back in the lab with renewed vigour. Both have enjoyed long and productive careers in science, have taught and influenced many young minds and have contributed to the published literature. In the past decade or so, they have taken an interest in the chemical senses.

Don has applied his interest in molecular recognition and capture as performed by antibodies, to the development of chemical sensing materials and the electronic nose. A spin-off company and an active program on e-noses are among the on-going outcomes of Don's dedication to his work (see *ChemoSense*, 2002, 4(3), 8-10).

Peter has adapted his interest in membrane biophysics and channel properties to understanding the mammalian olfactory receptor cell. His collaborators recently held a three-hour seminar to review his scientific contributions. Notable among the accolades was his high output in the best journals in the field and citation rates that would make sailor blush, as it were. His computer programs for the teaching of membrane physiology are now used in dozens of universities around the world.

We look forward to more of their fine work and wish the Barnett and Barry families the best of everything in the years ahead.

Subscribe to ChemoSense : Catch all of 2003

E-mail a simple "Subscribe" instruction to b.crowley@unsw.edu.au

and give Brian your mailing address. He will send you a tax invoice and list you to receive ALL issues 2003 plus the coming December issue for only AUD \$55 (includes tax and postage). And Merry Christmas already! ■

ChemoSense (ISSN 1442-9098)

Published quarterly by the Centre for ChemoSensory Research, The University of New South Wales, Australian Technology Park, Sydney, Australia 1430.
Ph. (+61 2) 9209 4086; Fax (+61 2) 9209 4081
Web: <http://www.chemosensory.com>

Production Team

Editor: Graham Bell, Ph (+61 2) 9209 4083 g.bell@unsw.edu.au

Advertising & Subscriptions:

Brian Crowley, Ph (+61 2) 9209 4082, b.crowley@unsw.edu.au

Design and Layout:

Lawton Design pty ltd

Reproduction of ChemoSense in whole or in part is not permitted without written permission of the Editor

THE UNIVERSITY OF
NEW SOUTH WALES

